Sea Ice Properties in High‐Resolution Sea Ice Models
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Sea Ice Properties in High‐Resolution Sea Ice Models

Filetype[PDF-7.24 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Geophysical Research: Oceans
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    An Arctic sea ice‐ocean model is run with three uniform horizontal resolutions (6, 4, and 2 km) and identical sea ice and ocean model parameterizations, including an isotropic viscous‐plastic sea ice rheology, a mechanical ice strength parameterization, and an ice ridging parameterization. Driven by the same atmospheric forcing, the three model versions all produce similar spatial patterns and temporal variations of ice thickness and motion fields, resulting in almost identical magnitude and seasonal evolution of total ice volume and mean ice concentration, ice speed, and fractions of ice of various thickness categories over the Arctic Ocean. Increasing model resolution from 6 to 2 km does not significantly improve model performance when compared to NASA IceBridge ice thickness observations. This suggests that the large‐scale sea ice properties of the model are insensitive to varying high resolutions within the multifloe scale (2–10 km), and it may be unnecessary to adjust model parameters constantly with increasingly high resolutions. This is also true with models within the aggregate scale (10–75 km), indicating that model parameters used at coarse resolution may be used at high or multiscale resolution. However, even though the three versions all yield similar mean state of sea ice, they differ in representing anisotropic properties of sea ice. While they produce a basic pattern of major sea ice leads similar to satellite observations, their leads are distributed differently in space and time. Without changing model parameters and sea ice spatiotemporal variability, the 2‐km resolution model tends to capture more leads than the other two models.
  • Source:
    Journal of Geophysical Research: Oceans, 126(1)
  • DOI:
  • ISSN:
    2169-9275;2169-9291;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1