The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
A Generalized Slab Model
-
2024
-
-
Source: Journal of Physical Oceanography, 54(3), 949-965
Details:
-
Journal Title:Journal of Physical Oceanography
-
Personal Author:
-
NOAA Program & Office:
-
Description:We construct a generalized slab model to calculate the ocean’s linear response to an arbitrary, depth-variable forcing stress profile. To introduce a first-order improvement to the linear stress profile of the traditional slab model, a nonlinear stress profile, which allows momentum to penetrate into the transition layer (TL), is used [denoted mixed layer/transition layer (MLTL) stress profile]. The MLTL stress profile induces a twofold reduction in power input to inertial motions relative to the traditional slab approximation. The primary reduction arises as the TL allows momentum to be deposited over a greater depth range, reducing surface currents. The secondary reduction results from the production of turbulent kinetic energy (TKE) beneath the mixed layer (ML) related to interactions between shear stress and velocity shear. Direct comparison between observations in the Iceland Basin, the traditional slab model, the generalized slab model with the MLTL stress profile, and the Price–Weller–Pinkel (PWP) model suggest that the generalized slab model offers improved performance over a traditional slab model. In the Iceland Basin, modeled TKE production in the TL is consistent with observations of turbulent dissipation. Extension to global results via analysis of Argo profiling float data suggests that on the global, annual mean, ∼30% of the total power input to near-inertial motions is allocated to TKE production. We apply this result to the latest global, annual-mean estimates for near-inertial power input (0.27 TW) to estimate that 0.08 ± 0.01 TW of the total near-inertial power input are diverted to TKE production.
-
Keywords:
-
Source:Journal of Physical Oceanography, 54(3), 949-965
-
DOI:
-
ISSN:0022-3670;1520-0485;
-
Format:
-
Publisher:
-
Document Type:
-
Funding:
-
Rights Information:Other
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: