Relative importance of gas uptake on aerosol and ground surfaces characterized by equivalent uptake coefficients
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Relative importance of gas uptake on aerosol and ground surfaces characterized by equivalent uptake coefficients

Filetype[PDF-5.50 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Atmospheric Chemistry and Physics
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Quantifying the relative importance of gas uptake on the ground and aerosol surfaces helps to determine which processes should be included in atmospheric chemistry models. Gas uptake by aerosols is often characterized by an effective uptake coefficient (γeff), whereas gas uptake on the ground is usually described by a deposition velocity (Vd). For efficient comparison, we introduce an equivalent uptake coefficient (γeqv) at which the uptake flux of aerosols would equal that on the ground surface. If γeff is similar to or larger than γeqv, aerosol uptake is important and should be included in atmospheric models. In this study, we compare uptake fluxes in the planetary boundary layer (PBL) for different reactive trace gases (O3, NO2, SO2, N2O5, HNO3 and H2O2), aerosol types (mineral dust, soot, organic aerosol and sea salt aerosol), environments (urban areas, agricultural land, the Amazon forest and water bodies), seasons and mixing heights. For all investigated gases, γeqv ranges from magnitudes of 10−6–10−4 in polluted urban environments to 10−4–10−1 under pristine forest conditions. In urban areas, aerosol uptake is relevant for all species (γeff≥γeqv) and should be considered in models. On the contrary, contributions of aerosol uptakes in the Amazon forest are minor compared with the dry deposition. The phase state of aerosols could be one of the crucial factors influencing the uptake rates. Current models tend to underestimate the O3 uptake on liquid organic aerosols which can be important, especially over regions with γeff≥γeqv. H2O2 uptakes on a variety of aerosols are yet to be measured under laboratory conditions and evaluated. Given the fact that most models have considered the uptakes of these species on the ground surface, we suggest also considering the following processes in atmospheric models: N2O5 uptake by all types of aerosols, HNO3 and SO2 uptake by mineral dust and sea salt aerosols, H2O2 uptake by mineral dust, NO2 uptakes by sea salt aerosols and O3 uptake by liquid organic aerosols.
  • Keywords:
  • Source:
    Atmospheric Chemistry and Physics, 19(16), 10981-11011
  • DOI:
  • ISSN:
    1680-7324
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1