Twentieth and Twenty-First Century Water Storage Changes in the Nile River Basin from GRACE/GRACE-FO and Modeling
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Twentieth and Twenty-First Century Water Storage Changes in the Nile River Basin from GRACE/GRACE-FO and Modeling

Filetype[PDF-10.57 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Remote Sensing
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    This research assesses the changes in total water storage (TWS) during the twentieth century and future projections in the Nile River Basin (NRB) via TWSA (TWS anomalies) records from GRACE (Gravity Recovery and Climate Experiment), GRACE-FO (Follow-On), data-driven-reanalysis TWSA and a land surface model (LSM), in association with precipitation, temperature records, and standard drought indicators. The analytical approach incorporates the development of 100+ yearlong TWSA records using a probabilistic conditional distribution fitting approach by the GAMLSS (generalized additive model for location, scale, and shape) model. The model performance was tested using standard indicators including coevolution plots, the Nash–Sutcliffe coefficient, cumulative density function, standardized residuals, and uncertainty bounds. All model evaluation results are satisfactory to excellent. The drought and flooding severity/magnitude, duration, and recurrence frequencies were assessed during the studied period. The results showed, (1) The NRB between 2002 to 2020 has witnessed a substantial transition to wetter conditions. Specifically, during the wet season, the NRB received between ~50 Gt./yr. to ~300 Gt./yr. compared to ~30 Gt./yr. to ~70 Gt./yr. of water loss during the dry season. (2) The TWSA reanalysis records between 1901 to 2002 revealed that the NRB had experienced a positive increase in TWS of ~17% during the wet season. Moreover, the TWS storage had witnessed a recovery of ~28% during the dry season. (3) The projected TWSA between 2021 to 2050 unveiled a positive increase in the TWS during the rainy season. While during the dry season, the water storage showed insubstantial TWS changes. Despite these projections, the future storage suggested a reduction between 10 to 30% in TWS. The analysis of drought and flooding frequencies between 1901 to 2050 revealed that the NRB has ~64 dry-years compared to ~86 wet-years. The exceedance probabilities for the normal conditions are between 44 to 52%, relative to a 4% chance of extreme events. The recurrence interval of the normal to moderate wet or dry conditions is ~6 years. These TWSA trajectories call for further water resources planning in the region, especially during flood seasons. This research contributes to the ongoing efforts to improve the TWSA assessment and its associated dynamics for transboundary river basins.
  • Keywords:
  • Source:
    Remote Sensing, 13(5), 953
  • DOI:
  • ISSN:
    2072-4292
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1