Estimation of Surface Sensible Heat Flux due to Precipitation over CONUS and Its Impact on Urban Extreme Precipitation Modeling
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Estimation of Surface Sensible Heat Flux due to Precipitation over CONUS and Its Impact on Urban Extreme Precipitation Modeling

Filetype[PDF-22.18 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Hydrometeorology
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The surface sensible heat flux induced by precipitation (QP) is a consequence of the temperature difference between the surface and the rain droplets. Despite its seemingly negligible nature, QP is frequently omitted from both meteorological and climatological models. Nevertheless, it is important to acknowledge the numerous occasions in which the instantaneous values of QP can be significant, particularly during extreme precipitation events. This study undertakes a comprehensive assessment of QP across the contiguous United States (CONUS) utilizing high-resolution reanalysis, observational data, and numerical modeling to examine the influence of QP on precipitation and the surface energy budget. The findings indicate that the spatial distribution of QP climatology is analogous to that of precipitation, with magnitudes ranging from 2 to 3 W m−2 predominantly over the Midwest and Southeast regions. A seasonal analysis of QP reveals that the highest values occurring during the June–August (JJA) period, averaging 3.18 W m−2. Peak QP values of approximately 4 W m−2 are observed during JJA over the Great Plains region. We hypothesize that the QP during an extreme precipitation event would be nonnegligible and have a significant impact on the local weather. To test this conjecture, we perform high-resolution simulations with and without QP during an extreme precipitation event over the Chicago Metropolitan Area (CMA). The results show that the QP may be a dominant factor compared to other components of surface heat flux during the zenith of precipitation hours. Also, QP has the potential to not only diminish precipitation but also alter and reconfigure the remaining surface energy budget components.
  • Keywords:
  • Source:
    Journal of Hydrometeorology, 25(3), 413-424
  • DOI:
  • ISSN:
    1525-755X;1525-7541;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1