U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Atmospheric and Oceanic Origins of Tropical Precipitation Variability



Details

  • Journal Title:
    Journal of Climate
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The intrinsic atmospheric and ocean-induced tropical precipitation variability is studied using millennial control simulations with various degrees of ocean coupling. A comparison between the coupled simulation and the atmosphere-only simulation with climatological sea surface temperatures (SSTs) shows that a substantial amount of tropical precipitation variability is generated without oceanic influence. This intrinsic atmospheric variability features a red noise spectrum from daily to monthly time scales and a white noise spectrum beyond the monthly time scale. The oceanic impact is inappreciable for submonthly time scales but important at interannual and longer time scales. For time scales longer than a year, it enhances precipitation variability throughout much of the tropical oceans and suppresses it in some subtropical areas, preferentially in the summer hemisphere. The sign of the ocean-induced precipitation variability can be inferred from the local precipitation–SST relationship, which largely reflects the local feedbacks between the two, although nonlocal forcing associated with El Niño–Southern Oscillation also plays a role. The thermodynamic and dynamic nature of the ocean-induced precipitation variability is studied by comparing the fully coupled and slab ocean simulations. For time scales longer than a year, equatorial precipitation variability is almost entirely driven by ocean circulation, except in the Atlantic Ocean. In the rest of the tropics, ocean-induced precipitation variability is dominated by mixed layer thermodynamics. Additional analyses indicate that both dynamic and thermodynamic oceanic processes are important for establishing the leading modes of large-scale tropical precipitation variability. On the other hand, ocean dynamics likely dampens tropical Pacific variability at multidecadal time scales and beyond.
  • Keywords:
  • Source:
    Journal of Climate, 30(9), 3197-3217
  • DOI:
  • ISSN:
    0894-8755 ; 1520-0442
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha-512:aa387e807f5da184f8e6f5db8d08c87f4ab808498f887f6c517ea384668c31f53c0b939ef6dcfc820d2d46353a439217f6298dd710b991fffa06b712c180a508
  • Download URL:
  • File Type:
    Filetype[PDF - 6.88 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.