The Response of an Idealized Atmosphere to Orographic Forcing: Zonal versus Meridional Propagation
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

The Response of an Idealized Atmosphere to Orographic Forcing: Zonal versus Meridional Propagation

Filetype[PDF-2.34 MB]



Details:

  • Journal Title:
    Journal of the Atmospheric Sciences
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    A dry atmospheric general circulation model is forced with large-scale, Gaussian orography in an attempt to isolate a regime in which the model responds linearly to orographic forcing and then to study the departures from linearity as the orography is increased in amplitude. In contrast to previous results, which emphasized the meridional propagation of orographically forced stationary waves, using the standard Held–Suarez (H–S) control climate, it is found that the linear regime is characterized by a meridionally trapped, zonally propagating wave. Meridionally trapped waves of this kind have been seen in other contexts, where they have been termed “circumglobal waves.” As the height of the orography is increased, the circumglobal wave coexists with a meridionally propagating wave and for large-enough heights the meridionally propagating wave dominates the response. A barotropic model on a sphere reproduces this trapped wave in the linear regime and also reproduces the transition to meridional propagation with increasing amplitude. However, mean-flow modification by the stationary waves is very different in the two models, making it difficult to argue that the transitions have the same causes. When adding asymmetry across the equator to the H–S control climate and placing the orography in the cooler hemisphere, it becomes harder to generate trapped waves in the GCM and the trapping becomes sensitive to the shape of the orography. The barotropic model overestimates the trapping in this case. These results suggest that an improved understanding of the role of circumglobal waves will be needed to understand the stationary wave field and its sensitivity to the changes in the zonal-mean climate.
  • Keywords:
  • Source:
    Journal of the Atmospheric Sciences, 73(9), 3701-3718
  • DOI:
  • ISSN:
    0022-4928;1520-0469;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1