U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Toward Convective-Scale Prediction within the Next Generation Global Prediction System



Select the Download button to view the document
Please click the download button to view the document.

Details

  • Journal Title:
    Bulletin of the American Meteorological Society
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a new variable-resolution global model with the ability to represent convective-scale features that serves as a prototype of the Next Generation Global Prediction System (NGGPS). The goal of this prediction system is to maintain the skill in large-scale features while simultaneously improving the prediction skill of convectively driven mesoscale phenomena. This paper demonstrates the new capability of this model in convective-scale prediction relative to the current operational Global Forecast System (GFS). This model uses the stretched-grid functionality of the Finite-Volume Cubed-Sphere Dynamical Core (FV3) to refine the global 13-km uniform-resolution model down to 4-km convection-permitting resolution over the contiguous United States (CONUS), and implements the GFDL single-moment 6-category cloud microphysics to improve the representation of moist processes. Statistics gathered from two years of simulations by the GFS and select configurations of the FV3-based model are carefully examined. The variable-resolution FV3-based model is shown to possess global forecast skill comparable with that of the operational GFS while quantitatively improving skill and better representing the diurnal cycle within the high-resolution area compared to the uniform mesh simulations. Forecasts of the occurrence of extreme precipitation rates over the southern Great Plains are also shown to improve with the variable-resolution model. Case studies are provided of a squall line and a hurricane to demonstrate the effectiveness of the variable-resolution model to simulate convective-scale phenomena.
  • Keywords:
  • Source:
    Bulletin of the American Meteorological Society, 100(7), 1225-1243
  • DOI:
  • ISSN:
    0003-0007 ; 1520-0477
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
    urn:sha-512:c7200bd0dc8f7c2a575f3f4cda06c7916252bb1b18bf75a78087eeb24ad938db31e6eeb05609e8ebaea2bba02c7a8a8922eb3fd40661088899fc650f4ab08ca6
  • Download URL:
  • File Type:
    Filetype[PDF - 17.50 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.