The Role of Groundwater Withdrawals on River Regulation: Example From the Columbia River Basin
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

The Role of Groundwater Withdrawals on River Regulation: Example From the Columbia River Basin

Filetype[PDF-6.73 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Water Resources Research
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The Columbia River Basin (CRB) is heavily regulated by more than 250 dams on its river system while depending significantly on groundwater withdrawals in certain sub‐basins. Neglecting groundwater withdrawals in hydrologic models of the basin could result in inaccurate predictions of its water budget and thus mislead water management decisions in the basin. This study aims to understand the impacts of groundwater pumping on the spatiotemporal patterns of modeling regulated streamflow in the CRB using a modified version of the Variable Infiltration Capacity (VIC) model integrated with a water management component that accounts for groundwater withdrawals, irrigation demands, and reservoir operation (VIC‐GIRR). The VIC‐GIRR simulations showed that considering additional groundwater withdrawals would alleviate the stress of irrigation water deficit in the Snake River Basin with an average reduction of 10 km3/year. Such a reduction in water deficit resulted in slight streamflow increase over the CRB with maximum increase up to 40% during dry period in certain locations. We also note that the implementation of groundwater withdrawal does not, however, improve the overall model performance in long‐term averaged streamflow and storage predictions. Our results highlight the efforts needed to examine additional important processes in representing the interactions between water withdrawals and reservoir operations. Such efforts will aid in better simulation of multi‐reservoir system and improve effectiveness for agricultural productivity, power generation, flood control, and navigation purposes.
  • Keywords:
  • Source:
    Water Resources Research, 58(6)
  • DOI:
  • ISSN:
    0043-1397;1944-7973;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1