Auroral Energy Flux and Joule Heating Derived From Global Maps of Field‐Aligned Currents
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Auroral Energy Flux and Joule Heating Derived From Global Maps of Field‐Aligned Currents

Filetype[PDF-2.75 MB]



Details:

  • Journal Title:
    Geophysical Research Letters
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    We calculate auroral energy flux and Joule heating in the high‐latitude ionosphere for 27 geomagnetically active days using two‐dimensional maps of field‐aligned currents determined by the Active Magnetosphere and Planetary Response Experiment. The energy input to the ionosphere due to Joule heating increases more rapidly with geomagnetic activity than that due to precipitating particles. The energy flux varies more smoothly with time than Joule heating, which is impulsive in nature on time scales from minutes to tens of minutes. These impulsive events correlate well with recoveries in the Sym‐H index, with the maximum correlation when compared to Sym‐H recoveries 70 min later. Because of prior studies that have associated transient recoveries of Sym‐H with substorm expansions, the delay found here suggests that dissipation of energy in the ionosphere occurs during the substorm growth phase prior to the release of magnetic energy caused by diversion of tail currents.
  • Keywords:
  • Source:
    Geophysical Research Letters, 48(7)
  • DOI:
  • ISSN:
    0094-8276;1944-8007;
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY-NC-ND
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1