Skillful Prediction of Monthly Major Hurricane Activity in the North Atlantic with Two‐way Nesting
Supporting Files
-
2019
-
Details
-
Journal Title:Geophysical Research Letters
-
Personal Author:
-
NOAA Program & Office:
-
Description:We investigate the monthly prediction of North Atlantic hurricane and especially major hurricane activity based on the Geophysical Fluid Dynamics Laboratory High‐Resolution Atmospheric Model (HiRAM). We compare the performance of two grid configurations: a globally uniform 25‐km grid and the other with an 8‐km interactive nest over the tropical North Atlantic. Both grid configurations show skills in predicting anomalous monthly hurricane frequency and accumulated cyclone energy. Particularly, the 8‐km nested model shows improved skills in predicting major hurricane frequency and accumulated cyclone energy. The skill in anomalous monthly hurricane occurrence prediction arises from the accurate prediction of zonal wind shear anomalies in the Main Development Region, which in turn arises from the sea surface temperature anomalies persisted from the initialization time. The enhanced resolution on the nested grid permits a better representation of hurricanes and especially intense hurricanes, thereby showing the ability and the potential for prediction of major hurricanes on subseasonal timescales.
-
Keywords:
-
Source:Geophysical Research Letters, 46(15), 9222-9230
-
DOI:
-
ISSN:0094-8276 ; 1944-8007
-
Format:
-
Publisher:
-
Document Type:
-
Funding:
-
Rights Information:Other
-
Compliance:Library
-
Main Document Checksum:urn:sha-512:183c4d8f054c6b797ad047434ef56995c25c14b2312a90cf346033c6548accecec3d9c992d7e498ca83219c1e483f3d6d5fb731940cbcd80e0f57395a3268738
-
Download URL:
-
File Type:
Supporting Files
ON THIS PAGE
The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles,
guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the
NOAA IR retains documents in their original published format to ensure public access to scientific information.
You May Also Like