Dependence on initial conditions versus model formulations for medium‐range forecast error variations
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Dependence on initial conditions versus model formulations for medium‐range forecast error variations

Filetype[PDF-3.93 MB]



Details:

  • Journal Title:
    Quarterly Journal of the Royal Meteorological Society
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Understanding the root causes of forecast errors and occasional very poor forecasts is essential but difficult. In this paper we investigate the relative importance of initial conditions and model formulation for medium‐range errors in 500 hPa geopotential height. The question is addressed by comparing forecasts produced with ECMWF‐IFS and NCEP‐GFS forecasting systems, and with the GFDL‐fvGFS model initialized with the ECMWF and NCEP initial conditions. This gives two pairs of configurations that use the same initial conditions but different models, and one pair with the same model but different initial conditions. The first conclusion is that the initial conditions play the major role in differences between the configurations in terms of the average root‐mean‐square error for both Northern and Southern Hemispheres as well as Europe and the contiguous US (CONUS), while the model dominates the systematic errors. A similar conclusion is also found by verifying precipitation over low latitudes and the CONUS. The day‐to‐day variations of 500 hPa geopotential height scores are exemplified by one case of a forecast bust over Europe, where the error is found to be dominated by initial errors. The results are generalized by calculating correlations between errors integrated over Europe, CONUS and a region in the southeastern Pacific from the different configurations. For Europe and southeast Pacific, the correlations in the medium range are highest between the pairs that use the same initial conditions, while over CONUS they are highest for the pair with the same model. This suggests different mechanisms behind the day‐to‐day variability of the score for these regions. Over CONUS the link is made to the propagation of troughs over the Rockies, and the result suggests that the large differences in parametrizations of orographic drag between the models play a role.
  • Keywords:
  • Source:
    Quarterly Journal of the Royal Meteorological Society, 145(722), 2085-2100
  • DOI:
  • ISSN:
    0035-9009;1477-870X;
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1