The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Radar Signatures and Surface Observations of Elevated Convection Associated with Damaging Surface Winds
-
2024
-
Source: Weather and Forecasting (2024)
Details:
-
Journal Title:Weather and Forecasting
-
Personal Author:
-
NOAA Program & Office:
-
Description:Identifying radar signatures indicative of damaging surface winds produced by convection remains a challenge for operational meteorologists, especially within environments characterized by strong low-level static stability and convection for which inflow is presumably entirely above the planetary boundary layer. Numerical model simulations suggest the most prevalent method through which elevated convection generates damaging surface winds is via “up-down” trajectories, where a near-surface stable layer is dynamically lifted and then dropped with little to no connection to momentum associated with the elevated convection itself. Recently, a number of unique convective episodes during which damaging surface winds were produced by apparently elevated convection coincident with mesoscale gravity waves were identified and cataloged for study. A novel radar signature indicative of damaging surface winds produced by elevated convection is introduced through six representative cases. One case is then explored further via a high-resolution model simulation and related to the conceptual model of “up-down” trajectories. Understanding the processes responsible for, and radar signature indicative of, damaging surface winds produced by gravity-wave coincident convection will help operational forecasters identify and ultimately warn for a previously underappreciated phenomenon that poses a threat to lives and property.
-
Keywords:
-
Source:Weather and Forecasting (2024)
-
DOI:
-
ISSN:0882-8156;1520-0434;
-
Format:
-
Publisher:
-
Document Type:
-
Rights Information:Other
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: