Assessing the Ensemble Predictability of Precipitation Forecasts for the January 2015 and 2016 East Coast Winter Storms
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Assessing the Ensemble Predictability of Precipitation Forecasts for the January 2015 and 2016 East Coast Winter Storms

Filetype[PDF-6.45 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Weather and Forecasting
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The ensemble predictability of the January 2015 and 2016 East Coast winter storms is assessed, with model precipitation forecasts verified against observational datasets. Skill scores and reliability diagrams indicate that the large ensemble spread produced by operational forecasts was warranted given the actual forecast errors imposed by practical predictability limits. For the 2015 storm, uncertainties along the western edge’s sharp precipitation gradient are linked to position errors of the coastal low, which are traced to the positioning of the preceding 500-hPa wave pattern using the ensemble sensitivity technique. Predictability horizon diagrams indicate the forecast lead time in terms of initial detection, emergence of a signal, and convergence of solutions for an event. For the 2016 storm, the synoptic setup was detected at least 6 days in advance by global ensembles, whereas the predictability of mesoscale features is limited to hours. Convection-permitting WRF ensemble forecasts downscaled from the GEFS resolve mesoscale snowbands and demonstrate sensitivity to synoptic and mesoscale ensemble perturbations, as evidenced by changes in location and timing. Several perturbation techniques are compared, with stochastic techniques [the stochastic kinetic energy backscatter scheme (SKEBS) and stochastically perturbed parameterization tendency (SPPT)] and multiphysics configurations improving performance of both the ensemble mean and spread over the baseline initial conditions/boundary conditions (IC/BC) perturbation run. This study demonstrates the importance of ensembles and convective-allowing models for forecasting and decision support for east coast winter storms.
  • Keywords:
  • Source:
    Weather and Forecasting, 32(3), 1057-1078
  • DOI:
  • ISSN:
    0882-8156;1520-0434;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1