Applications of Explicitly Incorporated/Post‐Processing Measurement Uncertainty in Watershed Modeling
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Applications of Explicitly Incorporated/Post‐Processing Measurement Uncertainty in Watershed Modeling

Filetype[PDF-757.46 KB]



Details:

  • Journal Title:
    JAWRA Journal of the American Water Resources Association
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    In the field of watershed modeling, the impact of measurement uncertainty (MU) on calibration results indicates the potential issue of inaccurate model predictions. It is important to note that MU refers to the uncertainty in measured data such as flow and nutrient values that are used to evaluate model outputs. The calculation of error statistics assuming measured data are deterministic may not be appropriate as has been frequently stated in literature. Although MU can affect model calibration results, it is rarely incorporated in modeling practice. MU can be incorporated in two schemes: explicitly incorporated (MU‐EI) during model calibration and post‐processed (MU‐PP) after calibration is completed. In this study, both schemes are implemented in a case study of the Arroyo Colorado Watershed, Texas. Unexpectedly, no substantial differences were observed between each scheme for flow predictions. Although MU did not cause dramatic differences in most sediment and NH4‐N predictions, error statistics were affected in cases with MU greater than 50%, especially for sediment and NH4‐N. Therefore, it is concluded that MU may not exert a significant impact on model predictions until certain threshold is reached. This study demonstrates that high levels of uncertainty in measured calibration/validation data significantly affect parameter estimation, especially in the auto‐calibration process.
  • Keywords:
  • Source:
    JAWRA Journal of the American Water Resources Association, 52(2), 523-540
  • DOI:
  • ISSN:
    1093-474X;1752-1688;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1