The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Scalar Flux Profiles in the Unstable Atmospheric Surface Layer Under the Influence of Large Eddies: Implications for Eddy Covariance Flux Measurements and the Non‐Closure Problem
-
2023
-
-
Source: Geophysical Research Letters, 51(1)
Details:
-
Journal Title:Geophysical Research Letters
-
Personal Author:
-
NOAA Program & Office:
-
Description:How convective boundary‐layer (CBL) processes modify fluxes of sensible (SH) and latent (LH) heat and CO2 (Fc) in the atmospheric surface layer (ASL) remains a recalcitrant problem. Here, large eddy simulations for the CBL show that while SH in the ASL decreases linearly with height regardless of soil moisture conditions, LH and Fc decrease linearly with height over wet soils but increase with height over dry soils. This varying flux divergence/convergence is regulated by changes in asymmetric flux transport between top‐down and bottom‐up processes. Such flux divergence and convergence indicate that turbulent fluxes measured in the ASL underestimate and overestimate the “true” surface interfacial fluxes, respectively. While the non‐closure of the surface energy balance persists across all soil moisture states, it improves over drier soils due to overestimated LH. The non‐closure does not imply that Fc is always underestimated; Fc can be overestimated over dry soils despite the non‐closure issue.
-
Keywords:
-
Source:Geophysical Research Letters, 51(1)
-
DOI:
-
ISSN:0094-8276;1944-8007;
-
Format:
-
Publisher:
-
Document Type:
-
License:
-
Rights Information:CC BY-NC
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: