Modeling the impacts of two age‐related portfolio effects on recruitment variability with and without a marine reserve
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Modeling the impacts of two age‐related portfolio effects on recruitment variability with and without a marine reserve

Filetype[PDF-303.99 KB]



Details:

  • Journal Title:
    Ecological Applications
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Many rockfish species are long‐lived and thought to be susceptible to being overfished. Hypotheses about the importance of older female rockfish to population persistence have led to arguments that marine reserves are needed to ensure the sustainability of rockfish populations. However, the implications of these hypotheses for rockfish population dynamics are still unclear. We modeled two mechanisms by which reducing the proportion of older fish in a population has been hypothesized to influence sustainability, and explored whether these mechanisms influenced mean population dynamics and recruitment variability. We explored whether populations with these mechanisms could be managed more sustainably with a marine reserve in addition to a constant fishing mortality rate (F) than with a constant F alone. Both hypotheses can be seen as portfolio effects whereby risk of recruitment failure is spread over a “portfolio” of maternal ages. First, we modeled a spawning window effect whereby mothers of different ages spawned in different times or locations (windows) with local environmental conditions. Second, we modeled an offspring size effect whereby older mothers produced larger offspring than younger mothers, where length of a starvation period over which offspring could survive increased with maternal age. Recruitment variability resulting from both models was 55–65% lower than for models without maternal age‐related portfolio effects in the absence of fishing and increased with increases in Fs for both models. An offspring size effect caused lower output reproductive rates such that the specified reproductive rate input as a model parameter was no longer the realized rate measured as the reproductive rate observed in model results; this quirk is not addressed in previous analyses of offspring size effects. We conducted a standardization such that offspring size effect and control models had the same observed reproductive rates. A comparison of long‐term catch, the probability of falling below a biomass threshold, and recruitment variability over a range of exploitation rates for models with an age‐related portfolio effect showed no benefit of a marine reserve implemented in addition to a constant F (as compared to a constant F alone) for populations with sedentary adults and sedentary or mobile larvae.
  • Keywords:
  • Source:
    Ecological Applications, 27(7), 1985-2000
  • DOI:
  • ISSN:
    1051-0761;1939-5582;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at

Version 3.27.1