Evaluation of dryland riparian restoration with cottonwood and willow using deep‐planting and herbivore protection
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Evaluation of dryland riparian restoration with cottonwood and willow using deep‐planting and herbivore protection

Filetype[PDF-1.53 MB]



Details:

  • Journal Title:
    Ecosphere
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Degradation of dryland riparian ecosystems has been linked to the lowering of alluvial groundwater tables and reduced floodplain connectivity. Establishing riparian plants in dryland ecosystems with high water-stress and herbivore pressure presents major challenges for restoration practitioners. By planting at sufficient depths to reach lowered water tables, deep-planting provides direct access to water and encourages root development within hydrated soils. While deep-planting is a promising alternative to traditional supplemental irrigation in dryland areas affected by lowered water tables, few studies have evaluated deep-planting where planting depths must exceed one-meter to reach water tables and where herbivore protection is required. To evaluate deep-planting as an irrigation alternative where lowered water tables present a challenge to riparian restoration, we conducted experimental plantings along an incised stream within a semiarid watershed using deep-planting without supplemental irrigation in combination with several tree shelter designs. Our results indicate deep-planting cottonwood (Populus trichocarpa) and willow (Salix spp.) pole cuttings in augered holes that penetrated water tables up to 1.9 m below the surface significantly increased the probability of survival, with water table penetration significantly increasing the odds of survival by a factor of 7. Deep-planting with access to lowered water tables in combination with 0.9-m vented plastic tree shelters significantly increased the probability of survival, with over 50% higher survival after three years compared to unprotected and 1.-m circular fence caged plants that were also deep-planted with access to water. However, taller fence cages significantly reduced the probability of terminal bud loss from browsers with over 25% lower browse rates after three years. Therefore, we conducted additional experimental plantings to evaluate two taller plastic tree shelter designs to maximize survival while minimizing browsing. The results of our study indicate that deep-planting pole cuttings of cottonwood and willow with access to lowered water tables in combination with taller 1.8-m vented plastic tree shelters provided statistically similar survival as compared to the shorter 0.9-m vented plastic tree shelters after two years while significantly reducing browsing by approximately 75% two years after planting.
  • Keywords:
  • Source:
    Ecosphere, 6(12), 1-12
  • DOI:
  • ISSN:
    2150-8925;2150-8925;
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1