Forecasting the Genetic Impacts of Net Pen Failures on Gulf of Mexico Cobia Populations Using Individual‐based Model Simulations
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Forecasting the Genetic Impacts of Net Pen Failures on Gulf of Mexico Cobia Populations Using Individual‐based Model Simulations

Filetype[PDF-741.42 KB]



Details:

  • Journal Title:
    Journal of the World Aquaculture Society
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Offshore net pen fish farming provides a cost‐efficient means for production of marine finfish, and there is great interest in development of net pen operations in domestic waters. However, there are concerns over the possible genetic and ecological impacts that escaped fish may have on wild populations. We used individual‐based simulations, with parameter values informed by life history and genetic data, to investigate the short‐term (50 yr) impacts of net pen failures on the genetic composition of cobia, Rachycentron canadum, stocks in the Gulf of Mexico. Higher net pen failure rates resulted in greater genetic impacts on the wild population. Additionally, the use of more genetically differentiated source populations led to larger influxes of non‐native alleles and greater temporal genetic change in the population as a result of net pen failure. Our results highlight the importance of considering the appropriate source population for broodstock collection in net pen aquaculture systems and help to provide a general set of best management practices for broodstock selection and maintenance in net pen aquaculture operations. A thorough understanding of the genetic diversity, stock structure, and population demography of target species is important to determine the impact escapees can have on wild populations.
  • Keywords:
  • Source:
    Journal of the World Aquaculture Society, 48(1), 20-34
  • DOI:
  • ISSN:
    0893-8849;1749-7345;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1