Refining Convergent Rate Analysis with Topology in Mammalian Longevity and Marine Transitions
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Refining Convergent Rate Analysis with Topology in Mammalian Longevity and Marine Transitions

Filetype[PDF-1.01 MB]



Details:

  • Journal Title:
    Molecular Biology and Evolution
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The quest to map the genetic foundations of phenotypes has been empowered by the modern diversity, quality, and availability of genomic resources. Despite these expanding resources, the abundance of variation within lineages makes it challenging to associate genetic change to specific phenotypes, without an a priori means of isolating the changes from background genomic variation. Evolution provides this means through convergence—that is, the shared variation that may result from replicate evolutionary experiments across independent trait occurrences. To leverage these opportunities, we developed TRACCER: Topologically Ranked Analysis of Convergence via Comparative Evolutionary Rates. Compared to current methods, this software empowers rate convergence analysis by factoring in topological relationships, because genetic variation between phylogenetically proximate trait changes is more likely to be facilitating the trait. Comparisons are performed not with singular branches, but with the complete paths to the most recent common ancestor for each pair of lineages. This ensures that comparisons represent a single context diverging over the same timeframe while obviating the problematic requirement of assigning ancestral states. We applied TRACCER to two case studies: mammalian transitions to marine environments, an unambiguous collection of traits that have independently evolved three times; and the evolution of mammalian longevity, a less delineated trait but with more instances to compare. By factoring in topology, TRACCER identifies highly significant, convergent genetic signals, with important incongruities and statistical resolution when compared to existing approaches. These improvements in sensitivity and specificity of convergence analysis generate refined targets for downstream validation and identification of genotype–phenotype relationships.
  • Keywords:
  • Source:
    Molecular Biology and Evolution, 38(11), 5190-5203
  • DOI:
  • ISSN:
    0737-4038;1537-1719;
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1