Accounting for Age Structure and Spatial Structure in Eco-Evolutionary Analyses of a Large, Mobile Vertebrate
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Accounting for Age Structure and Spatial Structure in Eco-Evolutionary Analyses of a Large, Mobile Vertebrate

Filetype[PDF-1.28 MB]



Details:

  • Journal Title:
    Journal of Heredity
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The idealized concept of a population is integral to ecology, evolutionary biology, and natural resource management. To make analyses tractable, most models adopt simplifying assumptions, which almost inevitably are violated by real species in nature. Here, we focus on both demographic and genetic estimates of effective population size per generation (Ne), the effective number of breeders per year (Nb), and Wright’s neighborhood size (NS) for black bears (Ursus americanus) that are continuously distributed in the northern lower peninsula of Michigan, United States. We illustrate practical application of recently developed methods to account for violations of 2 common, simplifying assumptions about populations: 1) reproduction occurs in discrete generations and 2) mating occurs randomly among all individuals. We use a 9-year harvest dataset of >3300 individuals, together with genetic determination of 221 parent–offspring pairs, to estimate male and female vital rates, including age-specific survival, age-specific fecundity, and age-specific variance in fecundity (for which empirical data are rare). We find strong evidence for overdispersed variance in reproductive success of same-age individuals in both sexes, and we show that constraints on litter size have a strong influence on results. We also estimate that another life-history trait that is often ignored (skip breeding by females) has a relatively modest influence, reducing Nb by 9% and increasing Ne by 3%. We conclude that isolation by distance depresses genetic estimates of Nb, which implicitly assume a randomly mating population. Estimated demographic NS (100, based on parent–offspring dispersal) was similar to genetic NS (85, based on regression of genetic distance and geographic distance), indicating that the >36000 km2 study area includes about 4–5 black-bear neighborhoods. Results from this expansive data set provide important insight into effects of violating assumptions when estimating evolutionary parameters for long-lived, free-ranging species. In conjunction with recently developed analytical methodology, the ready availability of nonlethal DNA sampling methods and the ability to rapidly and cheaply survey many thousands of molecular markers should facilitate eco-evolutionary studies like this for many more species in nature.
  • Keywords:
  • Source:
    Journal of Heredity (2018)
  • DOI:
  • ISSN:
    0022-1503;1465-7333;
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC0 Public Domain
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1