The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
Geologic variability of conodont strontium isotopic composition quantified by laser ablation multiple collection inductively coupled plasma mass spectrometry
-
2021
-
-
Source: Palaeogeography, Palaeoclimatology, Palaeoecology, 568, 110308
Details:
-
Journal Title:Palaeogeography, Palaeoclimatology, Palaeoecology
-
Personal Author:
-
NOAA Program & Office:
-
Description:Conodont microfossils record seawater strontium isotope values (87Sr/86Sr), permitting chemostratigraphic correlation for tectonic and climatic reconstructions of the Paleozoic and early Mesozoic (541–201 Ma). Laser ablation multiple collection inductively coupled plasma mass spectrometry (LA MC-ICP-MS) can provide rapid, high spatial resolution 87Sr/86Sr analysis of conodont bioapatite but has not been validated by comparison with solution analysis. Validation of LA MC-ICP-MS should be completed in order to use the conodont 87Sr/86Sr values for age-correlations and environmental interpretations. Here, for the first time, we compare solution and LA MC-ICP-MS 87Sr/86Sr analyses of Carboniferous-age conodonts. Furthermore, we use quadrupole LA ICP-MS to determine concentrations of trace elements potentially responsible for isobaric interferences. Using increased mass resolving power (m/∆m = ~7500) and analyzing conodont tissue with low 85Rb/88Sr (< 0.001), we find laser ablation copacetic with solution 87Sr/86Sr values. The two-standard-deviation of these LA 87Sr/86Sr ratios (average 2SD = 0.00105) are within the two-standard-error uncertainty of solution measurements (average 2SE = 0.00001) on conodonts from the same stratigraphic level. The LA measurements are at a higher spatial resolution and on average 0.00015 higher than solution measurements. Uncertainty of the mean calculations, made on duplicate LA MC-ICP-MS analyses of individual conodonts from the same stratigraphic level, exhibit 87Sr/86Sr variability beyond the precision of reference materials (2SE = 0.00001). This finding suggests that solution 87Sr/86Sr values determined by dissolving multiple conodonts are homogenizing the conodont 87Sr/86Sr signal. As such, the precision of these solution measurements does not capture the geologic variability of conodont 87Sr/86Sr within a stratigraphic level, which may originate from differential diagenetic alteration. Conodont 87Sr/86Sr measurements that do not account for this variability are at risk of false calibrations with the paleo-seawater 87Sr/86Sr curve, which has implications for the timing of geologic events and reconstructions of paleo-environmental changes.
-
Keywords:
-
Source:Palaeogeography, Palaeoclimatology, Palaeoecology, 568, 110308
-
DOI:
-
ISSN:0031-0182
-
Format:
-
Publisher:
-
Document Type:
-
License:
-
Rights Information:CC BY-NC-ND
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: