Modeling baseline conditions of ecological indicators: Marine renewable energy environmental monitoring
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Modeling baseline conditions of ecological indicators: Marine renewable energy environmental monitoring

Filetype[PDF-653.98 KB]



Details:

  • Journal Title:
    Ecological Indicators
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Ecological indicators are often collected to detect and monitor environmental change. Statistical models are used to estimate natural variability, pre-existing trends, and environmental predictors of baseline indicator conditions. Establishing standard models for baseline characterization is critical to the effective design and implementation of environmental monitoring programs. An anthropogenic activity that requires monitoring is the development of Marine Renewable Energy sites. Currently, there are no standards for the analysis of environmental monitoring data for these development sites. Marine Renewable Energy monitoring data are used as a case study to develop and apply a model evaluation to establish best practices for characterizing baseline ecological indicator data. We examined a range of models, including six generalized regression models, four time series models, and three nonparametric models. Because monitoring data are not always normally distributed, we evaluated model ability to characterize normal and non-normal data using hydroacoustic metrics that serve as proxies for ecological indicator data. The nonparametric support vector regression and random forest models, and parametric state-space time series models generally were the most accurate in interpolating the normal metric data. Support vector regression and state-space models best interpolated the non-normally distributed data. If parametric results are preferred, then state-space models are the most robust for baseline characterization. Evaluation of a wide range of models provides a comprehensive characterization of the case study data, and highlights advantages of models rarely used in Marine Renewable Energy environmental monitoring. Our model findings are relevant for any ecological indicator data with similar properties, and the evaluation approach is applicable to any monitoring program.
  • Keywords:
  • Source:
    Ecological Indicators, 83, 178-191
  • DOI:
  • ISSN:
    1470-160X
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1