Empirically based models of oceanographic and biological influences on Pacific Herring recruitment in Prince William Sound
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Empirically based models of oceanographic and biological influences on Pacific Herring recruitment in Prince William Sound

Filetype[PDF-386.78 KB]



Details:

  • Journal Title:
    Deep Sea Research Part II: Topical Studies in Oceanography
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Abundances of small pelagic fish can change dramatically over time and are difficult to forecast, partially due to variable numbers of fish that annually mature and recruit to the spawning population. Recruitment strength of age-3 Pacific Herring (Clupea pallasii) in Prince William Sound, Alaska, is estimated in an age-structured model framework as a function of spawning stock biomass via a Ricker stock-recruitment model, and forecasted using the 10-year median recruitment estimates. However, stock size has little influence on subsequent numbers of recruits. This study evaluated the usefulness of herring recruitment models that incorporate oceanographic and biological variables. Results indicated herring recruitment estimates were significantly improved by modifying the standard Ricker model to include an index of young-of-the-year (YOY) Walleye Pollock (Gadus chalcogrammus) abundance. The positive relationship between herring recruits-per-spawner and YOY pollock abundance has persisted through three decades, including the herring stock crash of the early 1990s. Including sea surface temperature, primary productivity, and additional predator or competitor abundances singly or in combination did not improve model performance. We suggest that synchrony of juvenile herring and pollock survival may be caused by increased abundance of their zooplankton prey, or high juvenile pollock abundance may promote prey switching and satiation of predators. Regardless of the mechanism, the relationship has practical application to herring recruitment forecasting, and serves as an example of incorporating ecosystem components into a stock assessment model.
  • Keywords:
  • Source:
    Deep Sea Research Part II: Topical Studies in Oceanography, 147, 127-137
  • DOI:
  • ISSN:
    0967-0645
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY-NC-ND
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1