Bioinspired PDMS-graphene cantilever flow sensors using 3D printing and replica moulding
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Bioinspired PDMS-graphene cantilever flow sensors using 3D printing and replica moulding

Filetype[PDF-1.49 MB]



Details:

  • Journal Title:
    Nanotechnology
  • Personal Author:
  • NOAA Program & Office:
  • Sea Grant Program:
  • Description:
    Flow sensors found in animals often feature soft and slender structures (e.g. fish neuromasts, insect hairs, mammalian stereociliary bundles, etc) that bend in response to the slightest flow disturbances in their surroundings and heighten the animal’s vigilance with respect to prey and/or predators. However, fabrication of bioinspired flow sensors that mimic the material properties (e.g. low elastic modulus) and geometries (e.g. high-aspect ratio (HAR) structures) of their biological counterparts remains a challenge. In this work, we develop a facile and low-cost method of fabricating HAR cantilever flow sensors inspired by the mechanotransductory flow sensing principles found in nature. The proposed workflow entails high-resolution 3D printing to fabricate the master mould, replica moulding to create HAR polydimethylsiloxane (PDMS) cantilevers (thickness = 0.5–1 mm, width = 3 mm, aspect ratio = 20) with microfluidic channel (150 μm wide × 90 μm deep) imprints, and finally graphene nanoplatelet ink drop-casting into the microfluidic channels to create a piezoresistive strain gauge near the cantilever’s fixed end. The piezoresistive flow sensors were tested in controlled airflow (0–9 m s−1) inside a wind tunnel where they displayed high sensitivities of up to 5.8 kΩ m s−1, low hysteresis (11% of full-scale deflection), and good repeatability. The sensor output showed a second order dependence on airflow velocity and agreed well with analytical and finite element model predictions. Further, the sensor was also excited inside a water tank using an oscillating dipole where it was able to sense oscillatory flow velocities as low as 16–30 μm s−1 at an excitation frequency of 15 Hz. The methods presented in this work can enable facile and rapid prototyping of flexible HAR structures that can find applications as functional biomimetic flow sensors and/or physical models which can be used to explain biological phenomena.
  • Keywords:
  • Source:
    Nanotechnology, 32(9), 095501
  • DOI:
  • ISSN:
    0957-4484;1361-6528;
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1