Evaluating the utility of active microwave observations as a snow mission concept using observing system simulation experiments
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Evaluating the utility of active microwave observations as a snow mission concept using observing system simulation experiments

Filetype[PDF-8.62 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    The Cryosphere
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Satellite-based synthetic aperture radar (SAR) sensors have the potential to provide the first global measure of snow water equivalent (SWE), with key advantages compared to existing satellite observations (e.g., passive microwave sensors) such as high spatial resolution and capability in mountainous areas. While recent studies have shown some capability in challenging conditions, such as deep snow and forested areas, there is still work to be done to understand the limitations and benefits of these observations in an assimilation system. In this study, we develop an observing system simulation experiment (OSSE) to characterize the expected error levels of active microwave-based volume-scattering SWE retrievals over a western Colorado domain. We found that for a hypothetical SAR snow mission, the root mean square error (RMSE) of SWE improves by about 20 % in the mountainous environment if the retrieval algorithm can estimate SWE up to 600 mm and the tree cover fraction up to 40 %. Results also demonstrate that the potential SWE retrievals have larger improvements in the tundra (43 %) snow class, followed by boreal forest (22 %) and montane forest (17 %). Even though active microwave sensors are known to be limited by liquid water in the snowpack, they still reduced errors by up to 6 %–16 % of domain-averaged SWE in the melting period, suggesting that the SWE retrievals can add value to meltwater estimations and hydrological applications. Overall, this work provides a quantitative benchmark of the utility of a potential snow mission concept in a mountainous domain, helping to prioritize future algorithm development and field validation activities.
  • Keywords:
  • Source:
    The Cryosphere, 17(9), 3915-3931
  • DOI:
  • ISSN:
    1994-0424
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1