The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
On Bridging A Modeling Scale Gap: Mesoscale to Microscale Coupling for Wind Energy
-
2019
-
-
Source: Bulletin of the American Meteorological Society, 100(12), 2533-2550
Details:
-
Journal Title:Bulletin of the American Meteorological Society
-
Personal Author:
-
NOAA Program & Office:
-
Description:Accurately representing flow across the mesoscale to the microscale is a persistent roadblock for completing realistic microscale simulations. The science challenges that must be addressed to coupling at these scales include the following: 1) What is necessary to capture the variability of the mesoscale flow, and how do we avoid generating spurious rolls within the terra incognita between the scales? 2) Which methods effectively couple the mesoscale to the microscale and capture the correct nonstationary features at the microscale? 3) What are the best methods to initialize turbulence at the microscale? 4) What is the best way to handle the surface-layer parameterizations consistently at the mesoscale and the microscale? 5) How do we assess the impact of improvements in each of these aspects and quantify the uncertainty in the simulations? The U.S. Department of Energy Mesoscale-to-Microscale-Coupling project seeks to develop, verify, and validate physical models and modeling techniques that bridge the most important atmospheric scales determining wind plant performance and reliability, which impacts many meteorological applications. The approach begins with choosing case days that are interesting for wind energy for which there are observational data for validation. The team has focused on modeling nonstationary conditions for both flat and complex terrain. This paper describes the approaches taken to answer the science challenges, culminating in recommendations for best approaches for coupled modeling.
-
Keywords:
-
Source:Bulletin of the American Meteorological Society, 100(12), 2533-2550
-
DOI:
-
ISSN:0003-0007;1520-0477;
-
Format:
-
Publisher:
-
Document Type:
-
Rights Information:Other
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: