A low-wavenumber analysis of the environmental and vortex-scale variables responsible for rapid intensity changes in landfalling tropical cyclones
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

A low-wavenumber analysis of the environmental and vortex-scale variables responsible for rapid intensity changes in landfalling tropical cyclones

Filetype[PDF-940.41 KB]



Details:

  • Journal Title:
    Remote Sensing and Modeling of the Atmosphere, Oceans, and Interactions VII
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Forecasting rapid intensity changes in tropical cyclones (TCs) is hard as the factors responsible span many scales. External and internal dynamical and thermodynamical variables act simultaneously in a nonlinear fashion, either complementing, amplifying, inhibiting or not impacting the TC intensity at all. We try to address the following question: What is the relative importance of the external and vortex-scale variables that influence rapid intensity changes within a TC? Further, which of these variables must be prioritized from an observational standpoint? To answer these questions, a systematic analysis was conducted on a large number of representative TCs to make statistically significant conclusions using discriminant analyses of wavenumber (WN) - filtered fields, with a principal component analysis to detect over-fitting and identify the subset of variables (from the environment and the vortex) consistently correlated with rapid intensity change. Our analyses indicate that a small number of variables wield the most influence on TC rapid intensity changes. The most important variables within the vortex are the WN 0 of precipitation within the radius of maximum winds, the amplitudes of WN 1 of precipitation and the mid-level horizontal moisture flux convergence in the rain band region. Likewise, the most important environmental variables are the angle of the driest air from the shear vector and the magnitude of environmental wind shear. These variables must be prioritized in future observational and consequent data assimilation efforts.
  • Source:
    Remote Sensing and Modeling of the Atmosphere, Oceans, and Interactions VII (2018)
  • DOI:
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1