Assessing the GOES-16 ABI solar channels calibration using deep convective clouds
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Assessing the GOES-16 ABI solar channels calibration using deep convective clouds

Filetype[PDF-680.78 KB]



Details:

  • Journal Title:
    Infrared Remote Sensing and Instrumentation XXV
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Tropical deep convective clouds (DCCs) are thick, bright, cold, and their reflectance is considered stable. Thus, DCCs can be used to calibrate visible/near infrared (VNIR) channels of satellite instruments. Previous studies report how DCCs are identified by providing specific brightness temperature thresholds and are used for calibration purpose as an invariant target for solar channels. On 19 November 2016, the Geostationary Operational Environment Satellite-R Series (GOES-R) was successfully launched and became GOES-16 after it reached the geostationary orbit on 29 November 2016. The Advanced Baseline Imager (ABI) instrument on-board GOES-16 has 16 multi-spectral bands (0.47 - 13.3 μm) which have more accurate and frequent radiometric calibration information than previous GOES satellite series. Assessment and monitoring of the GOES-16 ABI VNIR channels calibration using DCC method is a main objective of this study. The target region is a 20°N-20°S and 119.5°W-59.5°W centered on the GOES-16 ABI check-out spatial domain (at 0.0°N, 89.5°W). This work is expected to provide useful information regarding the ABI radiometric calibration stability and such calibration stability of the ABI VNIR channels will be compared the results with other methods (e.g., ray-matching and desert) in the near future.
  • Source:
    Infrared Remote Sensing and Instrumentation XXV (2017)
  • DOI:
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1