Selenographic coordinate mapping of lunar observations by GOES imager
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Selenographic coordinate mapping of lunar observations by GOES imager

Filetype[PDF-808.43 KB]



Details:

  • Journal Title:
    SPIE Proceedings
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Radiometric stability of the lunar surface, its lack of atmosphere and smooth reflectance spectrum makes the moon an ideal target for calibrating satellite-based multi-band imagers. Lunar calibration for solar bands has been an important part of trending the radiometric performance of GOES imager. The lunar disk-equivalent irradiance has been often used to trend the on-orbit degradation of the GOES imager and its performance is largely affected by the uncertainties embedded in the lunar irradiance model in characterizing its dependence on lunar phase and libration. On the other hand, the lunar view by GOES imager provides opportunity to perform radiometric calibration of GOES imager using lunar radiances of selected locations on the moon. In order to do so, lunar observations by GOES need to be mapped onto selenographic coordinate, i.e. latitude and longitude in moon-centered coordinate. In this paper, algorithms and procedures are developed to map lunar images observed by GOES onto selenographic coordinate. Progressive shift in east-west scan direction, oversampling factor and distortion of lunar image are corrected to transform it back to be within a circular disk. Controlling region matching is applied to determine rotation angle and three consecutive rotations are performed to map lunar observation onto selenographic coordinate. Lunar observations of GOES-12 are processed and regions of interest (ROIs) are identified. Lunar phase-dependence of lunar measurements at ROIs is analyzed. It is found that lunar measurement depends strongly on Sun-Moon-Satellite geometry and knowledge of BRDF of lunar surface can enable trending of radiometric performance of GOES imager with local lunar radiance.
  • Source:
    SPIE Proceedings (2015)
  • DOI:
  • ISSN:
    0277-786X
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1