Heat shock protein 70 levels and post-harvest survival of eastern oysters following sublethal heat shock in the laboratory or conditioning in the field
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Heat shock protein 70 levels and post-harvest survival of eastern oysters following sublethal heat shock in the laboratory or conditioning in the field

Filetype[PDF-823.19 KB]



Details:

  • Journal Title:
    Cell Stress and Chaperones
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    A major problem of storing and shipping eastern oysters (Crassostrea virginica) from the Northern Gulf of Mexico in summer and early fall is their elevated mortality. A study was therefore conducted to determine whether heat shocking the oysters or conditioning them to aerial exposure prior to harvest could reduce their mortality during cold storage. Increasing the levels of stress proteins in bivalves has been shown to reduce their mortality when exposed to additional stressors. In this study, the levels of heat shock protein 70 (HSP70) proteins and cumulative mortality during cold storage, out of water, of market-sized oysters were measured, in summer, following (1) sublethal heat shocks (41 °C, 1 h) in the laboratory or (2) 3 weeks to 6 weeks of daily exposures to air (0 h, ~ 10 h, or ~ 18 h) in the field. In total, four heat shock and two aerial exposure studies were done. Consistently, heat shocks or 6 weeks of daily aerial exposures increased HSP70 levels in oysters but did not reduce their mortality during cold storage. Three weeks of daily aerial exposure did not increase HSP70 levels and only marginally reduced mortality; a significant reduction in cumulative mortality occurred in one of the aerial exposure studies after 7 days of cold storage (0 h [26%], ~ 18 h [8%]). In conclusion, upregulation of HSP70 proteins or aerial exposure during grow-out was not an effective tool in reducing the mortality of oysters harvested in summer and held in cold storage.
  • Keywords:
  • Source:
    Cell Stress and Chaperones, 25(2), 369-378
  • DOI:
  • ISSN:
    1355-8145
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY-NC-ND
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1