Nitrogen liberated via allelopathy can promote harmful algal blooms
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Nitrogen liberated via allelopathy can promote harmful algal blooms

Filetype[PDF-2.03 MB]



Details:

  • Journal Title:
    Harmful Algae
  • Personal Author:
  • NOAA Program & Office:
  • Sea Grant Program:
  • Description:
    Allelopathy is a biological mechanism that can promote harmful algal blooms (HAB) via the inhibition of sympatric phytoplankton. While nutrient loading can also promote HABs, the ability of allelopathy to stimulate HABs via the regeneration of nutrients has yet to be explored. To examine the impacts of allelopathically liberated N on HAB species, a series of experiments were performed using multiple allelopathic HAB species including the dinoflagellates Alexandrium catenella and Margalefidinium polykrikoides, and the pelagophyte, Aureoumbra lagunensis. These HAB species were paired with the cosmopolitan dinoflagellate, Akashiwo sanguinea, that was labeled with 15NO3- or 15NH4+, allowing the release and transfer of N to be traced as a time course during allelopathic interactions. During all experiments, the allelopathic inhibition of Akashiwo was accompanied by increases in cell densities, growth rates, and the δ15N content of the HAB species, evidencing the transfer of N liberated from Akashiwo. The cellular transfer of 15N and release of dissolved N was higher when Akashiwo was grown with 15NO3- compared to 15NH4+ suggesting a differential subcellular-compartmentalization of N sources. Regardless of the type of N, HAB species obtained 60 – 100% of their cellular N from lysed Akashiwo cells and there was an enrichment of the δ15N content of the dissolved NH4+ pool post-lysis of Akashiwo. Collectively, the results demonstrate that beyond facilitating species succession, allelopathy can supply HABs with N and, therefore, is likely important for promoting and sustaining HABs. Given that allelopathy is known to be a dose-dependent process, allelopathy may induce a positive feedback loop, whereby competitors are lysed, N is liberated, HABs are intensified and, in turn, become more strongly allelopathic.
  • Source:
    Harmful Algae, 129, 102490
  • DOI:
  • ISSN:
    1568-9883
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1