U.S. flag An official website of the United States government.
Official websites use .gov

A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS

A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

i

Impounded sediment and dam removal: Erosion rates and proximal downstream fate



Select the Download button to view the document
Please click the download button to view the document.

Details

  • Journal Title:
    Earth Surface Processes and Landforms
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Sediment management is an important aspect of dam removal projects, often driving costs and influencing community acceptance. For dams storing uncontaminated sediments, downstream release is often the cheapest and most practical approach and can be ecologically beneficial to downstream areas deprived of sediment for years. To employ this option, project proponents must estimate the sediment quantity to be released and, if substantial, estimate how long it will take to erode, where it will go and how long it will stay there. We investigated these issues when the Bloede Dam was removed from the Patapsco River in Maryland, USA, in 2018. The dam was about 10 m high, and its impoundment was nearly filled with an estimated 186 600 m3 of sediment composed of 70% sand and 30% mud. After removal, using elevation surveys generated by traditional methods as well as structure‐from‐motion (SfM) photogrammetry at high temporal resolution, we documented rapid erosion of stored sediments in the first 6 months (~60%) followed by greatly reduced erosion rates for the next two and a half years. A stable channel developed in the impoundment during the rapid erosion phase. These results were predicted by a two‐phased erosion response model developed from observations at sand‐filled impoundments, thus expanding its applicability to include impoundments with a sand‐over‐mud stratigraphy. A similar two‐phase erosion response has been reported for sediment releases at other dam removals in the United States, France and Japan across a range of dam and watershed scales, indicating what practitioners and communities should expect in similar settings. Downstream, repeat surveys combined with discharge and sediment gaging showed rapid transport of eroded sediments through a 5‐km reach, especially during the first year when discharges were above normal, and little overbank storage.
  • Source:
    Earth Surface Processes and Landforms (2024)
  • DOI:
  • ISSN:
    0197-9337 ; 1096-9837
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • License:
  • Rights Information:
    CC BY-NC
  • Compliance:
    Submitted
  • Main Document Checksum:
    urn:sha256:081b4f88853af71c4eadb70038f0e1de43f6d8db72029a0706b9fe13ee82e36e
  • Download URL:
  • File Type:
    Filetype[PDF - 9.50 MB ]
ON THIS PAGE

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.