Tidal control and mangrove dieback impact on methane emissions from a subtropical mangrove estuary
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Tidal control and mangrove dieback impact on methane emissions from a subtropical mangrove estuary

Filetype[PDF-17.12 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Limnology and Oceanography
  • Personal Author:
  • NOAA Program & Office:
  • Sea Grant Program:
  • Description:
    Mangrove ecosystems with high sediment deposition and active carbon cycling are a source of methane (CH4) to the coastal atmosphere. We investigated diurnal and seasonal variations in CH4 emissions from a subtropical mangrove estuary in southern Texas, northwest Gulf of Mexico. Tidal processes, amplitude (spring vs. neap tides) and topographic characteristics are crucial factors controlling CH4 cycling in mangrove creeks. Higher CH4 concentrations were observed during the ebb in spring tides due to the combination of processive export of CH4 along the creeks during ebb tides and the addition of porewater CH4 in upper intertidal sediment under water inundation in spring tides. The annual CH4 emissions offset approximately 0.15% of the carbon stock in normal years, indicating that these mangrove creeks are a weak CH4 source. However, significantly elevated CH4 emissions were observed from mangrove dieback after the extreme cold‐freezing event in February 2021. The average CH4 flux from the mangrove creeks (126.1 ± 128.3 μmol [m2·d]−1) increased 45% in 3 months after mangrove die‐off in comparison with the overall average in normal years (87.0 ± 64.4 μmol [m2·d]−1). It is obvious that the previous small CH4 offset of the healthy mangrove forest was enlarged by the dieback event. Because the mangrove forests in this study live close to the limit of their survival range, our study highlights the important management considerations for blue carbon projects in vulnerable areas.
  • Source:
    Limnology and Oceanography, 68(4), 753-766
  • DOI:
  • ISSN:
    0024-3590;1939-5590;
  • Format:
  • Publisher:
  • Document Type:
  • Rights Information:
    Accepted Manuscript
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1