Genomic analysis of population history for Hawaiian monk seals
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Genomic analysis of population history for Hawaiian monk seals

Filetype[PDF-769.82 KB]



Details:

  • Journal Title:
    Endangered Species Research
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The Hawaiian monk seal Neomonachus schauinslandi, one of the world’s most endangered pinnipeds, has faced decades of declines and has been the focus of intensive conservation efforts. A myriad of conservation threats has led to range-wide population declines, but population trends among islands can vary widely in response to heterogeneous threats. Populations in the Northwestern Hawaiian Islands have been declining, whereas Main Hawaiian Islands numbers are expanding. Molecular data can provide information to disentangle population structure and dynamics; however, previous studies have yielded insufficient resolution in such a genetically depauperate species. Advances in genomic technology and affordability offer a novel opportunity to revisit questions about Hawaiian monk seal trends with high-resolution markers that provide better discrimination ability in low-diversity species. Here, we investigated region- and island-level population structuring and connectivity. We used BestRAD sequencing on 169 seals from 14 islands that span the archipelago to estimate genetic diversity, genetic differentiation, population structure, and migration rates. We did not find robust evidence for island-level population structure. For the first time, our data set provided resolution to differentiate regional populations with low but significant genetic differentiation. Further, DAPC illustrated population structure with evidence for connectivity, which mirrored our migration rate estimates. Future conservation decisions will need to consider the balance of maintaining connectivity between regions while not homogenizing and losing valuable, yet rare, regional unique variation.
  • Source:
    Endangered Species Research, 53, 327-340
  • DOI:
  • ISSN:
    1863-5407;1613-4796;
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1