Effects of changing temperature phenology on the abundance of a critically endangered baleen whale
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Effects of changing temperature phenology on the abundance of a critically endangered baleen whale

Filetype[PDF-4.33 MB]



Details:

  • Journal Title:
    Global Ecology and Conservation
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Incorporating the effects of climate change in species management strategies is one of today’s greatest conservation challenges. Mechanistic models can be used to address these challenges because they explain how climate change effects cascade through ecosystems and influence species distributions. We used structural equation models to test hypotheses about the cascading effects of climate change and basin-scale variables on the local abundance of North Atlantic right whales, a critically endangered species, in a historically important feeding habitat. We found that effects of the North Atlantic Oscillation, a basin-scale variable, on local right whale abundance occurred through a cascade of effects on other ecosystem variables, including chlorophyll a concentration, Calanus finmarchicus abundance, and zooplankton patchiness. These effects varied by month. We also found that the western Gulf of Maine spring thermal transition date (a proxy for climate change) is a major direct and indirect driver of variations in local right whale abundance. The indirect effect of earlier spring transition dates, through a pathway of prey abundance, suggested a decrease in local right whale abundance. However, right whale abundance increased because of the direct effect of regional spring transition date. The direct effect suggests that right whales may be using regional temperatures as a movement cue. The counter-acting direct and indirect effects of spring transition date suggest that right whales could face a mismatch with their prey, which could ultimately result in another large-scale distribution shift. Our causal modeling approach demonstrates that the influence of climate change on local right whale abundance in the Gulf of Maine cascades through a network of variables. These cascading effects make predicting local right whale abundance challenging and suggest that successful endangered species conservation requires identifying the mechanisms underlying species distributions.
  • Keywords:
  • Source:
    Global Ecology and Conservation, 38, e02193
  • DOI:
  • ISSN:
    2351-9894
  • Format:
  • Publisher:
  • Document Type:
  • License:
  • Rights Information:
    CC BY-NC-ND
  • Compliance:
    Submitted
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1