Role of a Pacific Easterly Wave in the Genesis of Hagupit (2008)
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

Role of a Pacific Easterly Wave in the Genesis of Hagupit (2008)

Filetype[PDF-14.24 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Weather and Forecasting
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The Advanced version of the Weather Research and Forecasting (WRF-ARW) Model is used to investigate the influence of an easterly wave (EW) on the genesis of Typhoon Hagupit (2008) in the western North Pacific. Observational analysis indicates that the precursor disturbance of Typhoon Hagupit (2008) is an easterly wave (EW) in the western North Pacific, which can be detected at least 7 days prior to the typhoon genesis. In the control experiment, the genesis of the typhoon is well captured. A sensitivity experiment is conducted by filtering out the synoptic-scale (3–8-day) signals associated with the EW. The absence of the EW eliminates the typhoon genesis. Two mechanisms are proposed regarding the effect of the EW on the genesis of Hagupit. First, the background cyclonic vorticity of the EW could induce the small-scale cyclonic vorticities to merge and develop into a system-scale vortex. Second, the EW provides a favorable environment in situ for the rapid development of the typhoon disturbance through a positive moisture–convection feedback.
  • Keywords:
  • Source:
    Weather and Forecasting, 37(12), 2183-2194
  • DOI:
  • ISSN:
    0882-8156;1520-0434;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1