Toward Operational Real-Time Identification of Frontal Boundaries Using Machine Learning
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Toward Operational Real-Time Identification of Frontal Boundaries Using Machine Learning

Filetype[PDF-7.93 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Artificial Intelligence for the Earth Systems
  • Description:
    We present and evaluate a deep learning first-guess front-identification system that identifies cold, warm, stationary, and occluded fronts. Frontal boundaries play a key role in the daily weather around the world. Human-drawn fronts provided by the National Weather Service’s Weather Prediction Center, Ocean Prediction Center, Tropical Analysis and Forecast Branch, and Honolulu Forecast Office are treated as ground-truth labels for training the deep learning models. The models are trained using ERA5 data with variables known to be important for distinguishing frontal boundaries, including temperature, equivalent potential temperature, and wind velocity and direction at multiple heights. Using a 250-km neighborhood over the contiguous U.S. domain, our best models achieve critical success index scores of 0.60 for cold fronts, 0.43 for warm fronts, 0.48 for stationary fronts, 0.45 for occluded fronts, and 0.71 using a binary classification system (front/no front), whereas scores over the full unified surface analysis domain were lower. For cold and warm fronts and binary classification, these scores significantly outperform prior baseline methods that utilize 250-km neighborhoods. These first-guess deep learning algorithms can be used by forecasters to locate frontal boundaries more effectively and expedite the frontal analysis process. Significance Statement Fronts are boundaries that affect the weather that people experience daily. Currently, forecasters must identify these boundaries through manual analysis. We have developed an automated machine learning method for detecting cold, warm, stationary, and occluded fronts. Our automated method provides forecasters with an additional tool to expedite the frontal analysis process.
  • Source:
    Artificial Intelligence for the Earth Systems, 2(3)
  • ISSN:
    2769-7525
  • Format:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26