A Deep Learning Filter for the Intraseasonal Variability of the Tropics
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

A Deep Learning Filter for the Intraseasonal Variability of the Tropics

Filetype[PDF-35.06 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Artificial Intelligence for the Earth Systems
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    This paper presents a novel application of convolutional neural network (CNN) models for filtering the intraseasonal variability of the tropical atmosphere. In this deep learning filter, two convolutional layers are applied sequentially in a supervised machine learning framework to extract the intraseasonal signal from the total daily anomalies. The CNN-based filter can be tailored for each field similarly to fast Fourier transform filtering methods. When applied to two different fields (zonal wind stress and outgoing longwave radiation), the index of agreement between the filtered signal obtained using the CNN-based filter and a conventional weight-based filter is between 95% and 99%. The advantage of the CNN-based filter over the conventional filters is its applicability to time series with the length comparable to the period of the signal being extracted. Significance Statement This study proposes a new method for discovering hidden connections in data representative of tropical atmosphere variability. The method makes use of an artificial intelligence (AI) algorithm that combines a mathematical operation known as convolution with a mathematical model built to reflect the behavior of the human brain known as artificial neural network. Our results show that the filtered data produced by the AI-based method are consistent with the results obtained using conventional mathematical algorithms. The advantage of the AI-based method is that it can be applied to cases for which the conventional methods have limitations, such as forecast (hindcast) data or real-time monitoring of tropical variability in the 20–100-day range.
  • Source:
    Artificial Intelligence for the Earth Systems, 2(4)
  • DOI:
  • ISSN:
    2769-7525
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1