Environmental Controls on the Tropical Island Diurnal Cycle in the Context of Intraseasonal Variability
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Environmental Controls on the Tropical Island Diurnal Cycle in the Context of Intraseasonal Variability

Filetype[PDF-5.63 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Climate
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The mechanisms regulating the relationship between the tropical island diurnal cycle and large-scale modes of tropical variability such as the boreal summer intraseasonal oscillation (BSISO) are explored in observations and an idealized model. Specifically, the local environmental conditions associated with diurnal cycle variability are explored. Using Luzon Island in the northern Philippines as an observational test case, a novel probabilistic framework is applied to improve the understanding of diurnal cycle variability. High-amplitude diurnal cycle days tend to occur with weak to moderate offshore low-level wind and near to above average column moisture in the local environment. The transition from the BSISO suppressed phase to the active phase is most likely to produce the wind and moisture conditions supportive of a substantial diurnal cycle over western Luzon and the South China Sea (SCS). Thus, the impact of the BSISO on the local diurnal cycle can be understood in terms of the change in the probability of favorable environmental conditions. Idealized high-resolution 3D Cloud Model 1 (CM1) simulations driven by base states derived from BSISO composite profiles are able to reproduce several important features of the observed diurnal cycle variability with BSISO phase, including the strong, land-based diurnal cycle and offshore propagation in the transition phases. Background wind appears to be the primary variable controlling the diurnal cycle response, but ambient moisture distinctly reduces precipitation strength in the suppressed BSISO phase and enhances it in the active phase.
  • Keywords:
  • Source:
    Journal of Climate, 36(21), 7465-7485
  • DOI:
  • ISSN:
    0894-8755;1520-0442;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1