The Essential Role of Westerly Wind Bursts in ENSO Dynamics and Extreme Events Quantified in Model “Wind Stress Shaving” Experiments
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

The Essential Role of Westerly Wind Bursts in ENSO Dynamics and Extreme Events Quantified in Model “Wind Stress Shaving” Experiments

Filetype[PDF-3.92 MB]



Details:

  • Journal Title:
    Journal of Climate
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Westerly wind bursts (WWBs)—brief but strong westerly wind anomalies in the equatorial Pacific—are believed to play an important role in El Niño–Southern Oscillation (ENSO) dynamics, but quantifying their effects is challenging. Here, we investigate the cumulative effects of WWBs on ENSO characteristics, including the occurrence of extreme El Niño events, via modified coupled model experiments within Community Earth System Model (CESM1) in which we progressively reduce the impacts of wind stress anomalies associated with model-generated WWBs. In these “wind stress shaving” experiments we limit momentum transfer from the atmosphere to the ocean above a preset threshold, thus “shaving off” wind bursts. To reduce the tropical Pacific mean state drift, both westerly and easterly wind bursts are removed, although the changes are dominated by WWB reduction. As we impose progressively stronger thresholds, both ENSO amplitude and the frequency of extreme El Niño decrease, and ENSO becomes less asymmetric. The warming center of El Niño shifts westward, indicating less frequent and weaker eastern Pacific (EP) El Niño events. Removing most wind burst–related wind stress anomalies reduces ENSO mean amplitude by 22%. The essential role of WWBs in the development of extreme El Niño events is highlighted by the suppressed eastward migration of the western Pacific warm pool and hence a weaker Bjerknes feedback under wind shaving. Overall, our results reaffirm the importance of WWBs in shaping the characteristics of ENSO and its extreme events and imply that WWB changes with global warming could influence future ENSO.
  • Keywords:
  • Source:
    Journal of Climate, 35(22), 7519-7538
  • DOI:
  • ISSN:
    0894-8755;1520-0442;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1