An Artificially Intelligent System for the Automated Issuance of Tornado Warnings in Simulated Convective Storms
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

An Artificially Intelligent System for the Automated Issuance of Tornado Warnings in Simulated Convective Storms

Filetype[PDF-7.82 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Weather and Forecasting
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The utility of employing artificial intelligence (AI) to issue tornado warnings is explored using an ensemble of 128 idealized simulations. Over 700 tornadoes develop within the ensemble of simulations, varying in duration, length, and associated storm mode. Machine-learning models are trained to forecast the temporal and spatial probabilities of tornado formation for a specific lead time. The machine-learning probabilities are used to produce tornado warning decisions for each grid point and lead time. An optimization function is defined, such that warning thresholds are modified to optimize the performance of the AI system on a specified metric (e.g., increased lead time, minimized false alarms, etc.). Using genetic algorithms, multiple AI systems are developed with different optimization functions. The different AI systems yield unique warning output depending on the desired attributes of the optimization function. The effects of the different optimization functions on warning performance are explored. Overall, performance is encouraging and suggests that automated tornado warning guidance is worth exploring with real-time data.
  • Keywords:
  • Source:
    Weather and Forecasting, 35(5), 1939-1965
  • DOI:
  • ISSN:
    0882-8156;1520-0434;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1