A Preliminary Polarimetric Radar Comparison of Pretornadic and Nontornadic Supercell Storms
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

A Preliminary Polarimetric Radar Comparison of Pretornadic and Nontornadic Supercell Storms

Filetype[PDF-2.94 MB]



Details:

  • Journal Title:
    Monthly Weather Review
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Supercell thunderstorms produce a variety of hazards, including tornadoes. A supercell will often exist for some time prior to producing a tornado, while other supercells never become tornadic. In this study, a series of hypotheses is tested regarding the ability of S-band polarimetric radar fields to distinguish pretornadic from nontornadic supercell storms. Several quantified polarimetric radar metrics are examined that are related to storm inflow, updraft, and hailfall characteristics in samples of 19–30 pretornadic and 18–31 nontornadic supercells. The results indicate that pretornadic supercells are characterized by smaller hail extent and echo appendages with larger mean drop size. Additionally, differential reflectivity ZDR column size is larger and less variable in the pretornadic storms in the 25–30 min prior to initial tornadogenesis. Many of the results indicate relatively small polarimetric differences that will likely be difficult to translate to operational use. Hail extent and ZDR column size, however, may exhibit operationally useful differences between pretornadic and nontornadic supercells.
  • Keywords:
  • Source:
    Monthly Weather Review, 148(4), 1567-1584
  • DOI:
  • ISSN:
    0027-0644;1520-0493;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1