The Role of Surface Fluxes in MJO Propagation through the Maritime Continent
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

The Role of Surface Fluxes in MJO Propagation through the Maritime Continent

Filetype[PDF-4.67 MB]



Details:

  • Journal Title:
    Journal of Climate
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    The “barrier effect” of the Maritime Continent (MC) is a known hurdle in understanding the propagation of the Madden–Julian oscillation (MJO). To understand the differing dynamics of MJO events that propagate versus stall over the MC, a new tracking algorithm utilizing 30–96-day-filtered NOAA Interpolated OLR anomalies is presented. Using this algorithm, MJO events can be identified, tracked, and described in terms of their propagation characteristics. Latent heat flux from OAFlux and CYGNSS surface winds and fluxes are compared for MJO events that do and do not propagate through the MC. Events that successfully propagate through the MC demonstrate regional surface flux anomalies that are stronger, more spatially coherent, and have a larger fetch. The spatial scale of convective anomalies for events that successfully propagate through the MC region is also larger than for terminating events. Large-scale enhancement of latent heat fluxes near and to the east of the date line, equally driven by dynamic and thermodynamic effects, also accompanies MJO events that successfully propagate through the MC. These findings are placed in the context of recent theoretical models of the MJO in which latent heat fluxes are important for propagation and destabilization.
  • Keywords:
  • Source:
    Journal of Climate, 36(6), 1633-1652
  • DOI:
  • ISSN:
    0894-8755;1520-0442;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1