A Vertically Resolved Analysis of Radiative Feedbacks on Moist Static Energy Variance in Tropical Cyclones
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners. As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i

A Vertically Resolved Analysis of Radiative Feedbacks on Moist Static Energy Variance in Tropical Cyclones

Filetype[PDF-3.59 MB]



Details:

  • Journal Title:
    Journal of Climate
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    A vertically resolved moist static energy (MSE) variance budget framework is used to diagnose processes associated with the development of tropical cyclones (TCs) in a general circulation model (GCM) under realistic boundary conditions. Previous studies have shown that interactions between radiation and MSE promote TC development. Here, we examine the vertical contributions of radiation and its interactions with MSE by performing several mechanism-denial experiments in which synoptic-scale radiative interactions are suppressed either in the boundary layer or in the free troposphere. Partly suppressing radiative interactions results in a reduction in global TC frequency. However, the magnitude of reduction and structure of the feedback depend on the intensity and structure of the TCs in these mechanism-denial experiments, indicating that both the magnitude and the vertical location of radiative interactions can impact global TC frequency. Using instantaneous 6-hourly outputs, an explicit computation reveals distinct spatial patterns of the advection term: the vertical component is positive in the mid- to upper troposphere, which reflects an upward transport of MSE by deep convection, whereas the horizontal component is positive in the boundary layer. These results illustrate the impact of the vertical distribution of radiative interactions and vertically varied contribution of the advection term in the development of TCs.
  • Keywords:
  • Source:
    Journal of Climate, 36(4), 1125-1141
  • DOI:
  • ISSN:
    0894-8755;1520-0442;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.27.1