The Role of the Circulation Patterns in Projected Changes in Spring and Summer Precipitation Extremes in the U.S. Midwest
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

The Role of the Circulation Patterns in Projected Changes in Spring and Summer Precipitation Extremes in the U.S. Midwest

Filetype[PDF-4.71 MB]



Details:

  • Journal Title:
    Journal of Climate
  • Description:
    Recent studies suggest springtime wet extremes and summertime dry extremes will occur more frequently in the U.S. Midwest, potentially leading to devastating agricultural consequences. To understand the role of circulation patterns in the projected changes in seasonal precipitation extremes, the k-means clustering approach is applied to the large-ensemble experiments of Community Earth System Model, version 2 (CESM2-LE), and ensemble projections of CMIP6. We identify two key atmospheric circulation patterns that are associated with the extremely wet spring and extremely dry summer in the U.S. Midwest. The springtime wet extremes are typically linked to baroclinic waves with a northward shift of the North American westerly jet and positive anomalies in sea level pressure over the western Atlantic, which favor the development of the Great Plains low-level jet. The summertime dry extremes are associated with the development of an anomalous ridge with suppressed storm tracks over the central United States. The projected increase in springtime wet extremes and summertime dry extremes can be attributed to significantly more frequent occurrences of the associated atmospheric regimes. Particularly, the intensity of wet extremes is expected to increase mainly due to the enhanced moisture flux from the Gulf of Mexico. The moisture budget analysis suggests that the precipitation extremes are mainly associated with the dynamic component of atmospheric circulation. CESM2-LE and CMIP6 exhibit good agreement in the projected changes in circulation patterns and precipitation extremes. Our results explain the mechanism of the projected changes in the Midwest seasonal precipitation and highlight the contribution of circulation patterns to hydroclimatic extremes.
  • Source:
    Journal of Climate, 36(6), 1943-1956
  • ISSN:
    0894-8755;1520-0442;
  • Format:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26