The Use of High-Resolution Sounding Data to Evaluate and Optimize Nonlocal PBL Schemes for Simulating the Slightly Stable Upper Convective Boundary Layer
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

The Use of High-Resolution Sounding Data to Evaluate and Optimize Nonlocal PBL Schemes for Simulating the Slightly Stable Upper Convective Boundary Layer

Filetype[PDF-4.56 MB]



Details:

  • Journal Title:
    Monthly Weather Review
  • Description:
    Since the 1950s, a countergradient flux term has been added to some K-profile-based first-order PBL schemes, allowing them to simulate the slightly statically stable upper part of the convective boundary layer (CBL) observed in a limited number of aircraft soundings. There is, however, substantial uncertainty in inferring detailed CBL structure, particularly the level of neutral stability (zn), from such a limited number of soundings. In this study, composite profiles of potential temperature are derived from multiyear early afternoon radiosonde data over Beijing, China. The CBLs become slightly stable above zn ~ 0.31–0.33zi, where zi is the CBL depth. These composite profiles are used to evaluate two K-profile PBL schemes, the Yonsei University (YSU) and Shin–Hong (SH) schemes, and to optimize the latter through parameter calibration. In one-dimensional simulations using the WRF Model, YSU simulates a stable CBL above zn ~ 0.24zi, while default SH simulates a thick superadiabatic lower CBL with zn ~ 0.45zi. Experiments with the analytic solution of a K-profile PBL model show that adjusting the countergradient flux profile leads to significant changes in the thermal structure of CBL, informing the calibration of SH. The SH scheme replaces the countergradient heat flux term in its predecessor YSU scheme with a three-layer nonlocal heating profile, with fnl specifying the peak value and z*SL specifying the height of this peak value. Increasing fnl to 1.1 lowers zn, but to too low a value, while simultaneously increasing z*SL to 0.4 leads to a more appropriate zn ~ 0.36zi. The calibrated SH scheme performs better than YSU and default SH for real CBLs.
  • Source:
    Monthly Weather Review, 147(10), 3825-3841
  • ISSN:
    0027-0644;1520-0493;
  • Format:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26