The NOAA IR serves as an archival repository of NOAA-published products including scientific findings, journal articles, guidelines, recommendations, or other information authored or co-authored by NOAA or funded partners.
As a repository, the NOAA IR retains documents in their original published format to ensure public access to scientific information.
i
The Use of High-Resolution Sounding Data to Evaluate and Optimize Nonlocal PBL Schemes for Simulating the Slightly Stable Upper Convective Boundary Layer
-
2019
-
-
Source: Monthly Weather Review, 147(10), 3825-3841
Details:
-
Journal Title:Monthly Weather Review
-
Personal Author:
-
NOAA Program & Office:
-
Description:Since the 1950s, a countergradient flux term has been added to some K-profile-based first-order PBL schemes, allowing them to simulate the slightly statically stable upper part of the convective boundary layer (CBL) observed in a limited number of aircraft soundings. There is, however, substantial uncertainty in inferring detailed CBL structure, particularly the level of neutral stability (zn), from such a limited number of soundings. In this study, composite profiles of potential temperature are derived from multiyear early afternoon radiosonde data over Beijing, China. The CBLs become slightly stable above zn ~ 0.31–0.33zi, where zi is the CBL depth. These composite profiles are used to evaluate two K-profile PBL schemes, the Yonsei University (YSU) and Shin–Hong (SH) schemes, and to optimize the latter through parameter calibration. In one-dimensional simulations using the WRF Model, YSU simulates a stable CBL above zn ~ 0.24zi, while default SH simulates a thick superadiabatic lower CBL with zn ~ 0.45zi. Experiments with the analytic solution of a K-profile PBL model show that adjusting the countergradient flux profile leads to significant changes in the thermal structure of CBL, informing the calibration of SH. The SH scheme replaces the countergradient heat flux term in its predecessor YSU scheme with a three-layer nonlocal heating profile, with fnl specifying the peak value and z*SL specifying the height of this peak value. Increasing fnl to 1.1 lowers zn, but to too low a value, while simultaneously increasing z*SL to 0.4 leads to a more appropriate zn ~ 0.36zi. The calibrated SH scheme performs better than YSU and default SH for real CBLs.
-
Keywords:
-
Source:Monthly Weather Review, 147(10), 3825-3841
-
DOI:
-
ISSN:0027-0644;1520-0493;
-
Format:
-
Publisher:
-
Document Type:
-
Funding:
-
Rights Information:Other
-
Compliance:Library
-
Main Document Checksum:
-
Download URL:
-
File Type: