A Multidataset Assessment of Climatic Drivers and Uncertainties of Recent Trends in Evaporative Demand across the Continental United States
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

A Multidataset Assessment of Climatic Drivers and Uncertainties of Recent Trends in Evaporative Demand across the Continental United States

Filetype[PDF-2.34 MB]



Details:

  • Journal Title:
    Journal of Hydrometeorology
  • Description:
    Increased atmospheric evaporative demand has important implications for humans and ecosystems in water-scarce lands. While temperature plays a significant role in driving evaporative demand and its trend, other climate variables are also influential and their contributions to recent trends in evaporative demand are unknown. We address this gap with an assessment of recent (1980–2020) trends in annual reference evapotranspiration (ETo) and its drivers across the continental United States based on five gridded datasets. In doing so, we characterize the structural uncertainty of ETo trends and decompose the relative influences of temperature, wind speed, solar radiation, and humidity. Results highlight large and robust changes in ETo across much of the western United States, centered on the Rio Grande region where ETo increased 135–235 mm during 1980–2020. The largest uncertainties in ETo trends are in the central and eastern United States and surrounding the Upper Colorado River. Trend decomposition highlights the strong and widespread influence of temperature, which contributes to 57% of observed ETo trends, on average. ETo increases are mitigated by increases in specific humidity in non-water-limited regions, while small decreases in specific humidity and increases in wind speed and solar radiation magnify ETo increases across the West. Our results show increases in ETo across the West that are already emerging outside the range of variability observed 20–40 years ago. Our results suggest that twenty-first-century land and water managers need to plan for an already increasing influence of evaporative demand on water availability and wildfire risks.Significance StatementIncreased atmospheric thirst due to climate warming has the potential to decrease water availability and increase wildfire risks in water-scarce regions. Here, we identified how much atmospheric thirst has changed across the continental United States over the past 40 years, what climate variables are driving the change, and how consistent these changes are among five data sources. We found that atmospheric thirst is consistently emerging outside the range experienced in the late twentieth century in some western regions with 57% of the change driven by temperature. Importantly, we demonstrate that increased atmospheric thirst has already become a persistent forcing of western landscapes and water supplies toward drought and will be an essential consideration for land and water management planning going forward.
  • Source:
    Journal of Hydrometeorology, 23(4), 505-519
  • ISSN:
    1525-755X;1525-7541;
  • Format:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26