Topographic Trapping of the Leeuwin Current and Its Impact on the 2010/11 Ningaloo Niño
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

For very narrow results

When looking for a specific result

Best used for discovery & interchangable words

Recommended to be used in conjunction with other fields

Dates

to

Document Data
Library
People
Clear All
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

Topographic Trapping of the Leeuwin Current and Its Impact on the 2010/11 Ningaloo Niño

Filetype[PDF-23.77 MB]


Select the Download button to view the document
This document is over 5mb in size and cannot be previewed

Details:

  • Journal Title:
    Journal of Climate
  • Personal Author:
  • NOAA Program & Office:
  • Description:
    Previous theoretical studies suggest that the topography along the west coast of Australia plays an important role in strengthening and trapping the Leeuwin Current (LC) at the coast. To isolate and quantify the effect of the continental shelf and slope on the LC and Ningaloo Niño, high-resolution (1/12°) ocean general circulation model experiments with different bottom topographies are performed. The “control” experiment uses a realistic bottom topography along the west coast of Australia, whereas the sensitivity (“no-shelf”) experiment uses a modified topography with no continental shelf and slope near the coast. The mean and variability of LC are realistically simulated in the control experiment. Compared to the control experiment, the strength of LC in the no-shelf experiment decreased by about 28%. The continental shelf influences the development of the 2010/11 Ningaloo Niño through modulating the LC variability: in August–October 2010 and January–February 2011, the LC in the control experiment is enhanced much more than that in the no-shelf experiment. As a result, the upper-50-m ocean temperature in the control experiment is about 26% warmer than the no-shelf experiment from September 2010 to March 2011. Different evolution of SST warming is also found in the two experiments. Comparisons of oceanic processes in the two experiments show that the shelf-slope topography can effectively trap the positive sea level anomaly at the coast in the control experiment while more Rossby waves radiate from the coast in the no-shelf experiment, resulting in a weaker LC.
  • Keywords:
  • Source:
    Journal of Climate, 36(6), 1587-1603
  • DOI:
  • ISSN:
    0894-8755;1520-0442;
  • Format:
  • Publisher:
  • Document Type:
  • Funding:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • Download URL:
  • File Type:

Supporting Files

  • No Additional Files
More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26.1