A Technique for Seamless Forecast Construction and Validation from Weather to Monthly Time Scales
Advanced Search
Select up to three search categories and corresponding keywords using the fields to the right. Refer to the Help section for more detailed instructions.

Search our Collections & Repository

All these words:

For very narrow results

This exact word or phrase:

When looking for a specific result

Any of these words:

Best used for discovery & interchangable words

None of these words:

Recommended to be used in conjunction with other fields

Language:

Dates

Publication Date Range:

to

Document Data

Title:

Document Type:

Library

Collection:

Series:

People

Author:

Help
Clear All

Query Builder

Query box

Help
Clear All

For additional assistance using the Custom Query please check out our Help Page

i

A Technique for Seamless Forecast Construction and Validation from Weather to Monthly Time Scales

Filetype[PDF-2.90 MB]



Details:

  • Journal Title:
    Monthly Weather Review
  • Description:
    Seamless prediction means bridging discrete short-term weather forecasts valid at a specific time and time-averaged forecasts at longer periods. Subseasonal predictions span this time range and must contend with this transition. Seamless forecasts and seamless validation methods go hand-in-hand. Time-averaged forecasts often feature a verification window that widens in time with growing forecast leads. Ideally, a smooth transition across daily to monthly time scales would provide true seamlessness—a generalized approach is presented here to accomplish this. We discuss prior attempts to achieve this transition with individual weighting functions before presenting the two-parameter Hill equation as a general weighting function to blend discrete and time-averaged forecasts, achieving seamlessness. The Hill equation can be tuned to specify the lead time at which the discrete forecast loses dominance to time-averaged forecasts, as well as the swiftness of the transition with lead time. For this application, discrete forecasts are defined at any lead time using a Kronecker delta weighting, and any time-averaged weighting approach can be used at longer leads. Time-averaged weighting functions whose averaging window widens with lead time are used. Example applications are shown for deterministic and ensemble forecasts and validation and a variety of validation metrics, along with sensitivities to parameter choices and a discussion of caveats. This technique aims to counterbalance the natural increase in uncertainty with forecast lead. It is not meant to construct forecasts with the highest skill, but to construct forecasts with the highest utility across time scales from weather to subseasonal in a single seamless product.
  • Source:
    Monthly Weather Review, 148(9), 3589-3603
  • ISSN:
    0027-0644;1520-0493;
  • Format:
  • Document Type:
  • Rights Information:
    Other
  • Compliance:
    Library
  • Main Document Checksum:
  • File Type:

Supporting Files

  • No Additional Files

More +

You May Also Like

Checkout today's featured content at repository.library.noaa.gov

Version 3.26